[image:] Worcester Polytechnic Institute
Robotics Engineering Program

Final Term Project

SUBMITTED BY
Revant Mahajan with 33.33% contribution
Arjun Gandhi with 33.33% contribution
Andrew Euredjian with 33.33% contribution

Date Submitted	: 03/03/2018
Date Completed	: 03/02/2018
Course Professors: Bertozzi and Miller
Lab Section		: C02

[bookmark: _GoBack]Abstract

The aim of this report and the project is to simulate a robot working on a nuclear reactor.
A robot had to be built to operate on a custom field to replace nuclear fuel rods. Precision was one of the top requirements for this simulation. There were heavy penalties for rubbing the rod against the reactor or dropping them on the field. Robot had to be operated autonomously and had to decode Bluetooth messages. Our robot’s build was mechanically sound. Three subsystems were designed to work together hand in hand: Drivetrain, Four-Bar, Intake Rollers. All operations for these systems were under the margin of error. Our initial results were not up to the mark. We had some issues with the software first. Our initial code was blocking ,but as we switched to a non-blocking code, our issues got resolved. The final results were up to the expectations.

[image:]
Figure 1: Robot at various field positions

Table of Contents

1. Introduction				Page 4
2. Methodology				Page 5-6
3. Analysis				Page 7-14
4. Result					Page 15
5. Discussion				Page 15
6. Conclusion				Page 16
7. References				Page 17
8. Appendices 				Page 18-45

Introduction

Recent years have seen a phenomenal growth in nuclear power generation as a serious alternate source of energy and power. This transition has also witnessed a concomitant increase in associated risks too, both human and environmental. While most operations in nuclear power plants are automated, very often there arises a need for human intervention. This, however, gets severely restricted due to the risk of exposure to radiations. The problem became more apparent in the case of Japan Fukushima Reactor incident, when experts felt the need for personal examination to assess the damages caused to the reactor but were not able to so. This incident propelled scientists and engineers to develop robots as a viable investigating and assisting tool to undertake similar tasks with an ease of maneuverability.

The aim of this project is to simulate a robot tasked with replacing spent fuel rods in a nuclear reactor. The following tasks are to be performed during this simulation: -

· navigate to a reactor tube
· remove the spent rod from the tube
· find/navigate to an empty rod storage container
· store the spent rod in the storage container
· find/navigate to a supply container with a new rod in it
· remove the new rod from the supply container
· navigate back to the empty reactor tube
· insert the new rod into the reactor tube
· and then repeat the rod replacement process for the other reactor tube.

[image:]
Figure 2: Robot Field

 Methodology

In order to arrive at the mechanical design of the robot, we utilized a CAD model of the reactor area to identify specific positions that would be accessed by the robot. For the task at hand, these were defined as positions that would hold fuel rods. From this, a basic sketch of the robot was developed that could reach all the varied positions where fuel rods were located.

From this CAD model, we determined that there would be 4 subsystems to our robot, the base, the top half, the four bars, and the intake. We used the size and positioning of the rod storage to determine the shape of our base. In order to perfectly align it with the reactor, we used an alignment notch with a limit switch. Our team decided to go for a two-wheel drive with front wheels being omni-wheels and back wheels being traction wheels. The rear wheels were the driven wheels. To move around the field, line following methodology was used because of the way the field was designed. The four-bar geometry was determined by establishing a set of mounting points and using a perpendicular bisector to determine its geometry. The team decided to employ standard bar lengths so that it could be replaced with other materials , like VEX parts if needed. The four-bars were operated using a 60:30 driver: driven ratio with a Pololu motor. Refer to Appendix 1 for an e drawing on the four-bar

[image:]
Figure 3: Sketch of the robot

The gripper design was developed by following an iterative design process and was constructed from two large rollers and a set of flexible rollers through on-field testing. The top geometry was simply determined by the other system components, mainly to rigidly hold the motors and other electronic components needed for operation.

Bluetooth communications were used to determine the destination points. The robot operates according to these destinations and performs the tasks. The code for the robot is in appendix 2.

[image:]
Figure 4: Base of the robot

Analysis

Analysis for Drive Train
[image:]

Figure 5: The specifications sheet for the drive-train.

The required torque for turning was derived from the analysis below. Higher operating speed was preferred as it was found to produce low heat and provide a more efficient operating state.

Steady State Condition

· Running Speed - 100.8 rpm
· Steady State Current - 880 mA
· Torque Provided by the motor - 1.2 lbs
· Power Supplied - 1.43 W

[image:]
Figure 6: Free body diagram for drive-train

Equations :- Torque required to overcome friction and drive

[image:]

Stall torque for driving

· Running Speed - 0 rpm
· Steady State Current -3360 mA
· Torque Provided by the motor - 6 lbs
· Power Supplied - 0 W

Under this condition, the motor heats up very quickly and longer operation periods in this state damage the motor permanently

The torque required for turning

[image:]

Figure 7: Free Body Diagram for turning

Equations:- Torque required to turn.

[image:]

[image:]

Figure 8: Specification Sheet for four-bar motor
[image:]

[image:]
Figure 9: Free body diagram of four-bar

Stall Torque for four-bar

[image:]

The value of moment was estimated based on following calculations. An equal and opposite torques had to be applied to move the four bar.

[image:]
[image:]
Figure 10:

[image:]
								Figure 11:

The torque required to move the four-bar

[image:]

[image:]
Figure 12: Specification sheet for intake motor

· Using 1:1 driver: driven ratio
· Operating speed - 30 rpm
· Output torque - 3.16 in lbs

Result
At the end of the simulation, our robot preformed very well. It coordinated well with Bluetooth. The Intake mechanism dropped and pulled in rods accurately. Furthermore, the alignment notch and the limit switch were perfectly placed to stop the robot at the right places. Line following was precise and guided the robot to the destinations. The simulation was a success and the viability of this can be seen for real life situations
[image:] [image:]
Figure 13: Pictures of the robot

Discussion

The robot’s mechanical system worked as per our expectation. The estimates arrived during analysis were within expected values. Despite using motors at lower efficiency levels, there were no serious heating problems witnessed, largely due to the limited operation they performed. The line following was very accurate. Bluetooth messages were decoded appropriately. Intake rolling mechanism was very accurately actuated. We had some initial problems with the code but later on, we figured out our problem. Our initial code was blocking but later we made it non-blocking so that proper heartbeat messages could be sent. A more precise way of actuating the four-bar could have increased the performance. That said, our current system was actuated by Proportional control and did the job well.

	

Conclusion

With world switching towards more and more nuclear energy, safety measures have to be improved. Using robots to examine nuclear plants is the safest way. With further improvements in the technology, these robots can become more precise and can handle multiple tasks precisely. As for our robot, we can certainly improve the software part a lot. The code could be more efficient. Our four-bar mechanism had a little play.We solved it by using zip ties but we would like to explore a bit more sturdy fix for that

[bookmark: _l9v7grjwdt45]

References
	[1]
	1.Worcester Polytechnic Institute, "RBE2001 Lab4.pdf," 2018. [Online]. Available: https://canvas.wpi.edu/courses/6478/pages/lab-4-pid-control?module_item_id=148156[Accessed 7 February 2018].

	
	2.Worcester Polytechnic Institute RBE2001 wiki lab page.Available:- https://wiki.wpi.edu/robotics/RBE_2001_Lab_4_appendix#Advanced_Line_Following.

	

	3.Worcester Polytechnic Institute, "RBE2001 LabReportTemplate.pdf," 2018. [Online]. Available:
https://canvas.wpi.edu/courses/6478/pages/final-project-page?module_item_id=148227

	
	4.Worcester Polytechnic Institute, "RBE2001 LabReportTemplate.pdf," 2018. [Online]. Available: https://canvas.wpi.edu/courses/6478/pages/lab-4-pid-control?module_item_id=148156

	
	5.Worcester Polytechnic Institute, "Arduni_PID_Lab_4.zip," 2018. [Online]. Available: https://canvas.wpi.edu/courses/6478/pages/lab-4-pid-control?module_item_id=148156

	
	

	
	

Appendix

1) Four-bar e drawing with bill of materials

	[image:]

2) The code:

	#include "BTComms.h"

	
	

	
	#include "Arduino.h"

	
	

	
	/**

	
	 * Bluetooth communications constructor

	
	 */

	
	BTComms::BTComms() {

	
		messageIndex = 0;

	
		messageLength = 0;

	
		BTstate = kLookingForStart;

	
	}

	
	

	
	/**

	
	 * Code that is called from the arduino setup() function

	
	 * This initializes things that cannot be set up from the constructor.

	
	 */

	
	void BTComms::setup() {

	
	 Serial3.begin(115200);

	
	}

	
	

	
	/**

	
	 * Send a message to the RCS that has 3 values (opcode, source, dest)

	
	 * This method sends messages via bluetooth to the field that have an opcode with

	
	 * a source and destination address. It is used for the heartbeat message that has

	
	 * no message data.

	
	 *

	
	 * You could add additional methods exactly like this one, that take a payload such

	
	 * as a status message. You can create a new method that is exactly the same as this

	
	 * one (also called writeMessage), but with an additional parameter that gets sent.

	
	 * With C++ you can have multiple methods with the same name that are different by

	
	 * the number of parameters they have. Be sure that the new function adjusts the length,

	
	 * and writes the extra byte to the bluetooth interface and includes it in the checksum

	
	 * calculation.

	
	 */void BTComms::writeMessage(unsigned char opcode, unsigned char source, unsigned char dest) {

	
	 Serial3.write(kMessageStart);

	
	 Serial3.write(5);

	
	 Serial3.write(opcode);

	
	 Serial3.write(source);

	
	 Serial3.write(dest);

	
	 Serial3.write(0xff - (opcode + source + dest + 5));

	
	}

	
	

	
	void BTComms::writeMessage(unsigned char opcode, unsigned char source, unsigned char dest, unsigned char data) {

	
	 Serial3.write(kMessageStart);

	
	 Serial3.write(6);

	
	 Serial3.write(opcode);

	
	 Serial3.write(source);

	
	 Serial3.write(dest);

	
	 Serial3.write(data);

	
	 Serial3.write(0xff - (opcode + source + dest + data + 6));

	
	}

	
	/**

	
	 * Get the length of the currently received message

	
	 * @returns int The number of bytes in the received message

	
	 */

	
	int BTComms::getMessageLength() {

	
	 return messageLength;

	
	}

	
	

	
	/**

	
	 * Get a byte from the current message

	
	 * Retrieve a byte from the currently received message. Only a single message is

	
	 * remembered at any time, so you have to call read(), notice that there is a message,

	
	 * and then do something with the message bytes.

	
	 * @param index The offset (zero-based) to the byte to be returned

	
	 * @returns unsigned char The byte that is at the specified index

	
	 */

	
	unsigned char BTComms::getMessageByte(unsigned index) {

	
	 if (index >= messageLength) {

	
	 Serial.print("request for message byte beyond end of message ");

	
	 Serial.print(messageLength - index);

	
	 Serial.println(index);

	
	 return 0;

	
	 }

	
	 return message[index];

	
	}

	
	

	
	/**

	
	 * Read a message from Bluetooth

	
	 * This method reads messages from Bluetooth by looking for the message start byte, then

	
	 * reading the message length a nd data.

	
	 *

	
	 * You should probably modify this to ignore messages with invalid checksums!

	
	 */

	
	bool BTComms::read() {

	
	 while (Serial3.available()) {

	
	 unsigned inByte = Serial3.read();

	
	 switch (BTstate) {

	
	 case kLookingForStart:

	
	 if (inByte != kMessageStart)

	
	 	break;

	
	 BTstate = kReadingMessageLength;

	
	 break;

	
	 case kReadingMessageLength:

	
	 messageLength = inByte - 1;

	
	 if (messageLength >= messageBufferLength) {

	
	 Serial.println("Received message length greater than buffer size");

	
	 BTstate = kLookingForStart;

	
	 break;

	
	 }

	
	 messageIndex = 0;

	
	 BTstate = kReadMessage;

	
	 break;

	
	 case kReadMessage:

	
	 message[messageIndex++] = inByte;

	
	 if (messageIndex >= messageLength) {

	
	 BTstate = kLookingForStart;

	
	 return true;

	
	 }

	
	 break;

	
	 default:

	
	 Serial.println("Invalid state");

	
	 }

	
	 }

	
	 return false;

	
	}

BTComms.h

	#ifndef _BTReader

	
	#define _BTReader

	
	

	
	/**

	
	 * Low level class to both receive and send message to the field.

	
	 * The writeMessage() method sends messages to the field and the other methods

	
	 * receive message from the field.

	
	 *

	
	 * This class is used by the higher level Messages class to separate the actual

	
	 * byte reading and dealing with checksums from the messages class to make it more

	
	 * understandable.

	
	 */

	
	class BTComms {

	
	 public:

	
	 BTComms();

	
	 void setup();

	
	 int getMessageLength();

	
	 unsigned char getMessageByte(unsigned index);

	
	 bool read();

	
	 void writeMessage(unsigned char b1, unsigned char b2, unsigned char b3);

	
	 void writeMessage(unsigned char opcode, unsigned char source, unsigned char dest, unsigned char data);

	
	 private:

	
	 enum BTstate {kLookingForStart, kReadingMessageLength, kReadMessage} BTstate;

	
	 unsigned messageLength;

	
	 static const int messageBufferLength = 20;

	
	 unsigned char message[messageBufferLength];

	
	 unsigned messageIndex;

	
	 unsigned char kMessageStart = 0x5f;

	
	};

	
	

	
	#endif

Messages.cpp

	/*

	
	 * Messages.cpp

	
	 *

	
	 * Created on: Sep 15, 2016

	
	 * Author: bradmiller

	
	 */

	
	#include "Arduino.h"

	
	#include "Messages.h"

	
	#include "BTComms.h"

	
	

	
	BTComms comms;

	
	

	
	/**

	
	 * Constuctor

	
	 * Initialize everything here when the class is created

	
	 * Note: you cannot call methods that depend on other classes having already been created

	
	 */

	
	Messages::Messages() {

	
		stopped = false;

	
	 mode = LOW;

	
	}

	
	

	
	/**

	
	 * Setup class code that is called from the Arduino sketch setup() function. This doesn't

	
	 * get called until all the other classes have been created.

	
	 */

	
	void Messages::setup() {

	
		comms.setup();

	
	}

	
	

	
	/**

	
	 * Check if the field is currently in the "stop" state

	
	 * @returns bool value that is true if the robot should be stopped

	
	 */

	
	bool Messages::isStopped() {

	
		return stopped;

	
	}

	
	

	
	/**

	
	 * Send a heartbeat message to the field to let it know that your code is alive

	
	 * This should be called by your robot program periodically, say once per second. This

	
	 * timing can easily be done in the loop() function of your program.

	
	 */

	
	void Messages::sendHeartbeat() {

	
		comms.writeMessage(kHeartbeat, 0x0a, 0x00);

	
	}

	
	

	
	/**

	
	 * Print message for debugging

	
	 * This method prints the message as a string of hex numbers strictly for debugging

	
	 * purposes and is not required to be called for any other purpose.

	
	 */

	
	void Messages::printMessage() {

	
	 for (int i = 0; i < comms.getMessageLength(); i++) {

	
	 Serial.print(comms.getMessageByte(i), HEX);

	
	 Serial.print(" ");

	
	 }

	
	 Serial.println();

	
	}

	
	

	
	

	
	void Messages::sendRadiationAlert(unsigned long int inp) {

	
	 comms.writeMessage(kRadiationAlert, 0x0a, 0x00,inp);

	
	}

	
	

	
	

	
	

	
	/**

	
	 * Read messages from the Bluetooth serial connection

	
	 * This method should be called from the loop() function in your arduino code. It will check

	
	 * to see if the lower level comms object has received a complete message, and run the appropriate

	
	 * code to handle the message type. This should just save the state of the message inside this class

	
	 * inside member variables. Then add getters/setters to retrieve the status from your program.

	
	 */

	
	bool Messages::read() {

	
		if (comms.read()) {

	
			switch (comms.getMessageByte(0)) {

	
			case kStorageAvailability:Serial.println("start storage");

	
	 if(comms.getMessageByte(3)& 0x01){

	
	 storage[0] = 1;

	
	 }

	
	 else{

	
	 storage[0] = 0;

	
	 }

	
	 Serial.println(storage[0]);

	
	 if(comms.getMessageByte(3)& 0x02){

	
	 storage[1] = 1;

	
	 }

	
	 else{

	
	 storage[1] = 0;

	
	 }

	
	 Serial.println(storage[1]);

	
	

	
	 if(comms.getMessageByte(3)& 0x04){

	
	 storage[2] = 1;

	
	 }

	
	 else{

	
	 storage[2] = 0;

	
	 }

	
	 Serial.println(storage[2]);

	
	 if(comms.getMessageByte(3)& 0x08){

	
	 storage[3] = 1;

	
	 }

	
	 else{

	
	 storage[3] = 0;

	
	 }

	
	 Serial.println(storage[3]);

	
	 Serial.println("end");

	
				 break;

	
			case kSupplyAvailability:Serial.println("start supply");

	
			 if(comms.getMessageByte(3)& 0x01){

	
	 supply[0] = 1;

	
	 }

	
	 else{

	
	 supply[0] = 0;

	
	 }

	
	 Serial.println(supply[0]);

	
	 if(comms.getMessageByte(3)& 0x02){

	
	 supply[1] = 1;

	
	 }

	
	 else{

	
	 supply[1] = 0;

	
	 }

	
	 Serial.println(supply[1]);

	
	 if(comms.getMessageByte(3)& 0x04){

	
	 supply[2] = 1;

	
	 }

	
	 else{

	
	 supply[2] = 0;

	
	 }

	
	 Serial.println(supply[2]);

	
	 if(comms.getMessageByte(3)& 0x08){

	
	 supply[3] = 1;

	
	 }

	
	 else{

	
	 supply[3] = 0;

	
	 }

	
	 Serial.println(supply[3]);

	
	 Serial.println("end");

	
				break;

	
			case kRadiationAlert:

	
				break;

	
			case kStopMovement:mode = LOW;

	
				break;

	
			case kResumeMovement:mode = HIGH;

	
				break;

	
			case kRobotStatus:

	
				break;

	
			case kHeartbeat:Serial.println("Heartbeat message recieved");

	
				break;

	
			}

	
			return true;

	
		}

	
		return false;

	
	}

	
	

	
	

	
	

	
	bool Messages::isStorageAvailable(int i){

	
	 if (storage[i])

	
	 return false;

	
	 else

	
	 return true;

	
	}

	
	

	
	bool Messages::isSupplyAvailable(int i){

	
	 if (supply[i])

	
	 return false;

	
	 else

	
	 return true;

	
	}

	
	

	
	bool Messages :: getMode(){

	
	 return mode;

	
	}

	
	

	
	bool Messages:: isAddressed(){

	
	 if (comms.getMessageByte(1) == 0 || comms.getMessageByte(1) == 10)

	
	 return true;

	
	 else

	
	 return false;

	
	}

Messages.h

	/*

	
	 * Messages.h

	
	 *

	
	 * Created on: Sep 15, 2016

	
	 * Author: bradmiller

	
	 */

	
	

	
	#ifndef MESSAGES_H_

	
	#define MESSAGES_H_

	
	const int motor = 22;

	
	/**

	
	 * Handles Bluetooth messages as they are received from the Reactor Control System

	
	 * This class keeps the current state of the field and allows your program to query it at

	
	 * any time. The read() method is called inside the loop() of your program. It reads a

	
	 * message and sets the internal class state based on it's contents. This happens each loop.

	
	 * You then write methods (like isStopped(), below) that report on that state. The idea is

	
	 * that the receipt and parsing of the messages is decoupled from your use of the state data

	
	 * making your programs much less complex.

	
	 *

	
	 * You need to add code and private state variables (like stopped, below) to parse and remember

	
	 * the RCS state. Then add methods that can be called independent of message receipt to retrieve

	
	 * that state.

	
	 *

	
	 * Other things you may want to do:

	
	 * - check is messages are addressed to your robot (or broadcast to all)

	
	 * - handle the source and destination fields which exist for all messages

	
	 * - add methods to determine which storage is free/used so you can ask by number

	
	 * rather than having to do the bit mask stuff

	
	 */

	
	class Messages {

	
	public:

	
		typedef enum {kReserved,

	
			kStorageAvailability,

	
			kSupplyAvailability,

	
			kRadiationAlert,

	
			kStopMovement,

	
			kResumeMovement,

	
			kRobotStatus,

	
			kHeartbeat} MessageType;

	
	

	
		Messages();

	
	

	
		bool isStopped();

	
		void sendHeartbeat();

	
		bool read();

	
		void setup();

	
		void printMessage();

	
	 bool getMode();

	
	 bool isAddressed();

	
	 bool isStorageAvailable(int i);

	
	 bool isSupplyAvailable(int i);

	
	 void sendRadiationAlert(unsigned long int inp);

	
	

	
	private:

	
		bool stopped;

	
	 bool mode;

	
	 unsigned int storage[4];

	
	 unsigned int supply[4];

	
	};

	
	

	
	#endif /* MESSAGES_H_ */

Main

	#include <QTRSensors.h>

	
	#include <PID_v1.h>

	
	#include <Servo.h>

	
	#include "Adafruit_BNO055.h"

	
	#include "Adafruit_Sensor.h"

	
	#include "utility/imumaths.h"

	
	#include "Arduino.h"

	
	#include "Messages.h"

	
	#include "TimerOne.h"

	
	

	
	#define PIN_INPUT A4 // Potentiometer pin for fourbar arm

	
	#define E_STOP_PIN 2 // E_stop pin for ISR

	
	#define NUM_SENSORS 3 // number of sensors being used

	
	#define FRONT_BUMPER_PIN 22 // digital I/O pin that the front limit switch is plugged into

	
	#define LMOTOR_A 3 // first digital pin used for the left drive motor

	
	#define LMOTOR_B 5 // second digital pin used for the left drive motor

	
	#define RMOTOR_A 6 // first digital pin used for the right drive motor

	
	#define RMOTOR_B 9 // second digital pin used for the right drive motor

	
	#define AMOTOR_A 10 // first digital pin used for the fourbar motor

	
	#define AMOTOR_B 11 // second digital pin used for the fourbar motor

	
	

	
	Servo myservo; // create servo object to control a servo

	
	

	
	// Initialize values for PID

	
	long int tim,init_val;

	
	double Setpoint, Input, Output;

	
	double Kp=1.7,Ki=0 ,Kd=0;

	
	PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);

	
	bool armAtPos = false;

	
	

	
	// Initialize values for the reflectance sensors

	
	QTRSensorsAnalog qtra((unsigned char[]) {0,1,2}, NUM_SENSORS);

	
	unsigned int sensorValues[NUM_SENSORS];

	
	int left_sensor_val, right_sensor_val, back_sensor_val;

	
	bool hit_line = false;

	
	

	
	// Initialize values for the gyro

	
	Adafruit_BNO055 bno = Adafruit_BNO055();

	
	float target, start;

	
	

	
	// Initialize values for the Bluetooth protocols

	
	Messages msg;

	
	unsigned long long timeForHeartbeat;

	
	bool has_fuel_cell = false;

	
	int storage[4];

	
	int supply[4];

	
	

	
	int current_line;

	
	

	
	// state machine that keeps track of the main operations in the program

	
	enum core_action_choices {

	
	 EXTRACT_CORE_1,

	
	 EXTRACT_CORE_2,

	
	 DELIVER_CORE_1,

	
	 DELIVER_CORE_2,

	
	 EXTRACT_NEW_1,

	
	 EXTRACT_NEW_2,

	
	 DELIVER_OLD_1,

	
	 DELIVER_OLD_2,

	
	 CORES_REPLACED

	
	} core_action;

	
	

	
	// state machine that keeps track of if the robot has a fuel cell

	
	enum fuel_cell_options {

	
	 NONE,

	
	 USED,

	
	 NEW

	
	} fuel_cell;

	
	

	
	void setup() {

	
	 Serial.begin(115200);

	
	 myservo.attach(8);

	
	

	
	 // LINE FOLLOWER SETUP CODE

	
	 pinMode(FRONT_BUMPER_PIN, INPUT_PULLUP);

	
	 delay(500);

	
	 pinMode(13, OUTPUT);

	
	 digitalWrite(13, HIGH); // turn on Arduino's LED to indicate we are in calibration mode

	
	 for (int i = 0; i < 400; i++) // make the calibration take about 10 seconds

	
	 {

	
	 qtra.calibrate(); // reads all sensors 10 times at 2.5 ms per six sensors (i.e. ~25 ms per call)

	
	 }

	
	 digitalWrite(13, LOW); // turn off Arduino's LED to indicate we are through with calibration

	
	

	
	 // BLUETOOTH SETUP CODE

	
	 msg.setup();

	
	 timeForHeartbeat = millis() + 1000; // the time period that the robot will send out pings

	
	

	
	 // PID SETUP CODE

	
	 Input = analogRead(PIN_INPUT); // values provided through a potentiometer

	
	 Setpoint = 750;

	
	 myPID.SetMode(AUTOMATIC);

	
	 myPID.SetOutputLimits(-150,150);

	
	

	
	 // GYRO SETUP CODE

	
	 Serial.println("Orientation Sensor Test"); Serial.println("");

	
	

	
	 /* Initialise the sensor */

	
	 if(!bno.begin())

	
	 {

	
	 /* There was a problem detecting the BNO055 ... check your connections */

	
	 Serial.print("Ooops, no BNO055 detected ... Check your wiring or I2C ADDR!");

	
	 while(1);

	
	 }

	
	

	
	 delay(1000);

	
	 bno.setExtCrystalUse(true);

	
	

	
	 // Wait until a connection is established over bluetooth to do anything

	
	 eval_BT();

	
	

	
	 // ISR SETUP CODE

	
	 pinMode(E_STOP_PIN, INPUT);

	
	 Timer1.attachInterrupt(timer_interrupt, 1000000);

	
	 // attachInterrupt(digitalPinToInterrupt(E_STOP_PIN), e_stop, FALLING);

	
	}

	
	

	
	void loop() {

	
	 switch (core_action) {

	
	 case EXTRACT_CORE_1:

	
	 // brings up the arm

	
	 moveUp();

	
	

	
	 // follow the line till the front limit switch is triggered

	
	 while(digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 // do a series of movements to grab the core and prepare for the next state

	
	 drive_motor(-80, -80);

	
	 delay(200);

	
	 drive_motor(0, 0);

	
	

	
	 drive_arm(50);

	
	 delay(500);

	
	

	
	 myservo.write(140);

	
	 delay(800);

	
	 myservo.write(90);

	
	

	
	 moveUp();

	
	 delay(500);

	
	

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	

	
	 drive_motor(0, 0);

	
	 gyro_turn(175);

	
	

	
	 // update state machine values

	
	 core_action = DELIVER_OLD_1;

	
	 fuel_cell = USED;

	
	 break;

	
	 case EXTRACT_CORE_2:

	
	 // essentially the same as EXTRACT_CORE_2 except the state machines are updated to different states

	
	 moveUp();

	
	

	
	 while(digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 drive_motor(-80, -80);

	
	 delay(200);

	
	 drive_motor(0, 0);

	
	

	
	 drive_arm(50);

	
	 delay(500);

	
	

	
	 myservo.write(140);

	
	 delay(800);

	
	 myservo.write(90);

	
	

	
	 moveUp();

	
	

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	

	
	 drive_motor(0, 0);

	
	 gyro_turn(175);

	
	

	
	 core_action = DELIVER_OLD_2;

	
	 fuel_cell = USED;

	
	 break;

	
	 case DELIVER_CORE_1:

	
	 // read the reflectance sensor values and line follow till the back sensor reads a black line

	
	 qtra.read(sensorValues);

	
	 while (sensorValues[2] < 600) {

	
	 line_follow();

	
	 qtra.read(sensorValues);

	
	 }

	
	

	
	 // series of actions to place a new fuel rod into a core then setup for the next state

	
	 gyro_turn(-95);

	
	

	
	 while (digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 drive_motor(-160, -80);

	
	 delay(150);

	
	 drive_motor(0, 0);

	
	

	
	 drive_arm(50);

	
	 delay(500);

	
	

	
	 myservo.write(60);

	
	 delay(2500);

	
	 drive_motor(-80, -80);

	
	 delay(1500);

	
	 myservo.write(90);

	
	

	
	 gyro_turn(175);

	
	

	
	 // update state machines

	
	 core_action = EXTRACT_CORE_2;

	
	 fuel_cell = NONE;

	
	 break;

	
	 case DELIVER_CORE_2:

	
	 // essentially the same as DELIVER_CORE_1 except turning values are different

	
	 // and the state machines are updated to different states

	
	 qtra.read(sensorValues);

	
	 while (sensorValues[2] < 600) {

	
	 line_follow();

	
	 qtra.read(sensorValues);

	
	 }

	
	

	
	 gyro_turn(85);

	
	

	
	 while (digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 drive_motor(-160, -80);

	
	 delay(150);

	
	 drive_motor(0, 0);

	
	

	
	 drive_arm(50);

	
	 delay(500);

	
	

	
	 myservo.write(60);

	
	 delay(2500);

	
	 drive_motor(-80, -80);

	
	 delay(1500);

	
	 myservo.write(90);

	
	

	
	 gyro_turn(175);

	
	

	
	 core_action = CORES_REPLACED;

	
	 fuel_cell = NONE;

	
	 break;

	
	 case EXTRACT_NEW_1:

	
	 // function that aligns the robot with the appropraite supply tower

	
	 goto_supply();

	
	

	
	 // series of actions to drive up to the supply tower, take a rod, and setup for the next state

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	

	
	 while (digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 myservo.write(120);

	
	 delay(1700);

	
	 myservo.write(90);

	
	

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	

	
	 gyro_turn(175);

	
	

	
	 // update state machines

	
	 core_action = DELIVER_CORE_1;

	
	 fuel_cell = NEW;

	
	 break;

	
	 case EXTRACT_NEW_2:

	
	 // essentially the same as EXTRACT_NEW_1 except the turning values are different

	
	 // and the state machines are updated to different values

	
	 goto_supply();

	
	

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	

	
	 while (digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 myservo.write(120);

	
	 delay(1700);

	
	 myservo.write(90);

	
	

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	

	
	 gyro_turn(175);

	
	

	
	 core_action = DELIVER_CORE_2;

	
	 fuel_cell = NEW;

	
	 break;

	
	 case DELIVER_OLD_1:

	
	 // function that lines up the robot with the appropriate storage tower

	
	 goto_storage();

	
	

	
	 // series of action that drives up to the tower, deposits a rod, and sets up for the next state

	
	 gyro_turn(-95);

	
	

	
	 while (digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 myservo.write(60);

	
	 delay(2500);

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	 myservo.write(90);

	
	 gyro_turn(175);

	
	

	
	 // update state machines

	
	 core_action = EXTRACT_NEW_1;

	
	 fuel_cell = NONE;

	
	 break;

	
	 case DELIVER_OLD_2:

	
	 // essentially the same as DELIVER_OLD_1 except turning values are different

	
	 // and the state machines are updated to different states

	
	 goto_storage();

	
	

	
	 gyro_turn(85);

	
	

	
	 while (digitalRead(FRONT_BUMPER_PIN)) {

	
	 line_follow();

	
	 }

	
	

	
	 myservo.write(60);

	
	 delay(2500);

	
	 drive_motor(-80, -80);

	
	 delay(800);

	
	 myservo.write(90);

	
	 gyro_turn(175);

	
	

	
	 core_action = EXTRACT_NEW_2;

	
	 fuel_cell = NONE;

	
	 break;

	
	 case CORES_REPLACED:

	
	 // essentially stops all processes and disables all interrupts and starts an infinite loop

	
	 exit(0);

	
	 break;

	
	 }

	
	}

	
	

	
	void line_follow() {

	
	 // read reflectance sensor values

	
	 qtra.read(sensorValues);

	
	 left_sensor_val = sensorValues[0];

	
	 right_sensor_val = sensorValues[1];

	
	 // Serial.print(left_sensor_val);

	
	 // Serial.print("\t");

	
	 // Serial.print(right_sensor_val);

	
	 // Serial.print("\n");

	
	

	
	 // adjust direction of motion based off of how far off the line the robot is

	
	 if (left_sensor_val < 100) {

	
	 drive_motor(140, 80);

	
	 }

	
	 else if (left_sensor_val < 500) {

	
	 drive_motor(110, 80);

	
	 }

	
	 else if (right_sensor_val < 100) {

	
	 drive_motor(80, 140);

	
	 }

	
	 else if (right_sensor_val < 500) {

	
	 drive_motor(80, 110);

	
	 }

	
	 else {

	
	 drive_motor(80, 80);

	
	 }

	
	}

	
	

	
	void drive_motor(int lmotor, int rmotor) {

	
	 // if values are entered outside the accepted range of the motor controllers,

	
	 // alter them to the appropriate max/min value

	
	 lmotor = constrain(lmotor, -255, 255);

	
	 rmotor = constrain(rmotor, -255, 255);

	
	

	
	 // run the motors by providing the given input signals via PWM

	
	 if (lmotor > 0) {

	
	 analogWrite(LMOTOR_A, lmotor);

	
	 analogWrite(LMOTOR_B, 0);

	
	 }

	
	 else {

	
	 analogWrite(LMOTOR_A, 0);

	
	 analogWrite(LMOTOR_B, -lmotor);

	
	 }

	
	

	
	 if (rmotor > 0) {

	
	 analogWrite(RMOTOR_A, rmotor);

	
	 analogWrite(RMOTOR_B, 0);

	
	 }

	
	 else {

	
	 analogWrite(RMOTOR_A, 0);

	
	 analogWrite(RMOTOR_B, -rmotor);

	
	 }

	
	}

	
	

	
	void drive_arm(int amotor) {

	
	 // if a value is entered outside the accepted range of the motor controller,

	
	 // alter it to the appropriate max/min value

	
	 amotor = constrain(amotor, -255, 255);

	
	

	
	 // run the motor by providing the given input signal via PWM

	
	 if (amotor > 0) {

	
	 analogWrite(AMOTOR_A, amotor);

	
	 analogWrite(AMOTOR_B, 0);

	
	 }

	
	 else {

	
	 analogWrite(AMOTOR_A, 0);

	
	 analogWrite(AMOTOR_B, -amotor);

	
	 }

	
	}

	
	

	
	void moveUp() {

	
	 // use PID to lift the fourbar arm up to level with the towers

	
	 while (!armAtPos) {

	
	 Setpoint =760;

	
	 Input = analogRead(PIN_INPUT);

	
	

	
	 myPID.Compute();

	
	

	
	 drive_arm(Output);

	
	

	
	 // when the arm gets close to the desired point, hold it there

	
	 if(abs(Setpoint-Input)<=5){

	
	 armAtPos=true;

	
	 drive_arm(-20);

	
	 }

	
	 }

	
	 armAtPos = false;

	
	}

	
	

	
	void gyro_turn(int turn_amount) {

	
	 // get the latest sensor reading from the gyro

	
	 sensors_event_t event;

	
	 bno.getEvent(&event);

	
	 start = event.orientation.x;

	
	

	
	 // calculate the target angle given the provided values

	
	 target = start + turn_amount;

	
	 if (target < 0) {

	
	 target = 360 + target;

	
	 }

	
	 else if (target > 360) {

	
	 target = target - 360;

	
	 }

	
	

	
	 // turn until the robot orientation is close to the desired orientation

	
	 while (1) {

	
	 sensors_event_t event;

	
	 bno.getEvent(&event);

	
	

	
	 if (!(event.orientation.x <= target-0.3 || event.orientation.x >= target+0.3)) {

	
	 break;

	
	 }

	
	

	
	 if (turn_amount > 0) {

	
	 drive_motor(60, -60);

	
	 }

	
	 else {

	
	 drive_motor(-60, 60);

	
	 }

	
	 }

	
	 drive_motor(0,0);

	
	}

	
	

	
	void eval_BT() {

	
	 // don't do anything until a BT message can be read

	
	 while (!msg.read()) {}

	
	

	
	 // read the BT stream and interpret the tower data to create a local map for the program

	
	 msg.read();

	
	

	
	 for (int i = 0; i < 4; i++) {

	
	 if (!msg.isSupplyAvailable(i)) {

	
	 supply[i] = 1;

	
	 }

	
	 else {

	
	 supply[i] = 0;

	
	 }

	
	 if (msg.isStorageAvailable(i)) {

	
	 storage[3-i] = 1;

	
	 }

	
	 else {

	
	 storage[3-i] = 0;

	
	 }

	
	 }

	
	}

	
	

	
	void goto_storage() {

	
	 int distance;

	
	 int target_line;

	
	

	
	 // calculate the optimal storage tower to go to

	
	 if (core_action == DELIVER_OLD_1) {

	
	 for (int i = 0; i < 4; i++) {

	
	 if (storage[i]) {

	
	 distance = i + 1;

	
	 target_line = i + 1;

	
	 break;

	
	 }

	
	 }

	
	 }

	
	 else if (core_action == DELIVER_OLD_2) {

	
	 for (int i = 4; i > 0; i--) {

	
	 if (storage[i]) {

	
	 distance = 4 - i;

	
	 target_line = i + 1;

	
	 break;

	
	 }

	
	 }

	
	 }

	
	

	
	 // count lines to get to the desired tower

	
	 int count = 0;

	
	 while (count < distance) {

	
	 line_follow();

	
	 qtra.read(sensorValues);

	
	 back_sensor_val = sensorValues[2];

	
	 if (back_sensor_val > 500) {

	
	 hit_line = true;

	
	 }

	
	 else if (back_sensor_val < 500 && hit_line) {

	
	 count++;

	
	 hit_line = false;

	
	 }

	
	 }

	
	

	
	 // update values with new information

	
	 drive_motor(0, 0);

	
	 current_line = target_line;

	
	 storage[current_line - 1] = 0;

	
	}

	
	

	
	int goto_supply() {

	
	 int closest = 0;

	
	 int distance = 5; // arbitrary value that is greater than all possible values

	
	

	
	 // find the optimal supply tower to go to

	
	 for (int i = 0; i < 4; i++) {

	
	 if (supply[i] == 1 && abs(current_line - (i+1)) < distance) {

	
	 closest = i + 1;

	
	 distance = abs(current_line - closest);

	
	 }

	
	 }

	
	

	
	 // get back to the centerline and turn in the direction of the desired line

	
	 qtra.read(sensorValues);

	
	 while (sensorValues[2] < 600) {

	
	 line_follow();

	
	 qtra.read(sensorValues);

	
	 }

	
	

	
	 if (closest < current_line) {

	
	 gyro_turn(85);

	
	 }

	
	 else if (closest > current_line) {

	
	 gyro_turn(-95);

	
	 }

	
	 else {

	
	 return 1;

	
	 }

	
	

	
	 drive_motor(100, 100);

	
	 delay(200);

	
	

	
	 // count lines to the desired tower line

	
	 int count = 0;

	
	 while (count < distance) {

	
	 line_follow();

	
	 qtra.read(sensorValues);

	
	 back_sensor_val = sensorValues[2];

	
	 if (back_sensor_val > 500) {

	
	 hit_line = true;

	
	 }

	
	 else if (back_sensor_val < 500 && hit_line) {

	
	 count++;

	
	 hit_line = false;

	
	 }

	
	 }

	
	

	
	 if (closest < current_line) {

	
	 gyro_turn(-95);

	
	 }

	
	 else if (closest > current_line) {

	
	 gyro_turn(85);

	
	 }

	
	

	
	 drive_motor(0, 0);

	
	 // update values to reflect current status

	
	 current_line = closest;

	
	 supply[current_line - 1] = 0;

	
	 return 1;

	
	}

	
	

	
	void timer_interrupt() {

	
	 // send out heartbeat pulses and radiation alerts when appropriate

	
	 if (millis() > timeForHeartbeat) {

	
	 timeForHeartbeat = millis() + 1000;

	
	 msg.sendHeartbeat();

	
	 if (fuel_cell == NEW) {

	
	 msg.sendRadiationAlert(0xFF);

	
	 } else if (fuel_cell == USED) {

	
	 msg.sendRadiationAlert(0x2C);

	
	 }

	
	 }

	
	}

	
	

	
	void e_stop() {

	
	 // pause the operation of the robot temporarily

	
	 while (digitalRead(FRONT_BUMPER_PIN)) {

	
	 drive_arm(0);

	
	 drive_motor(0, 0);

	
	 myservo.write(90);

	
	 }

	
	}

1

image4.png

image5.png

image6.png
Speed (rpm)

0
6.3
126
18.9
252
315
37.8
441
50.4
56.7
63
69.3
75.6
819
88.2
94.5
100.8
107.1
1134
119.7
126

Torque (0z-in)

96
91.2
86.4
816
76.8

72
67.2
62.4
57.6
52.8

48
432
384
33.6
28.8

24
19.2
14.4

9.6
48

Current (mA)

3360
3205
3050
2895
2740
2585
2430
2275
2120
1965
1810
1655
1500
1345
1190
1035

880

725

570

415

260

Power (Watts)

0
0.4251744
0.8055936
1.1412576
1.4321664

1.67832
1.8797184
2.0363616
21482496
22153824

2.23776
22153824
21482496
2.0363616
1.8797184

1.67832
1.4321664
1.1412576
0.8055936
0.4251744

0

Efficiency

0%
2%
4%
5%
7%
9%
11%
12%
14%
16%
17%
19%
20%
21%
22%
23%
23%
22%
20%
14%
0%

stall Torque (0z-in)
96
Stall Current (mA)
3360
Rated Voltage (V)
7.2
Free Run Current (mA)
260
Free Run Speed (rpm)
126
Resistance (ohms)
2.142857143

image7.png
WB = 4in

X
< >
d=1375in
Fl
u = 0.1
N, W1=45Ibs
8 N
< e o

b =1.607 in a=2.893in

image8.png
T =0.44inlbs N_=3.25Ilbs
out B

N, =W,-N, =1.241bs

image9.png
WT
—————————
FI > >
U_=0.05
s
Is
r
d &
A

image10.png
WT =7.25in WB =4in d=1.375in

WT WT

0=By— +By— -FWB-F,WB =M, =0

0=F +F, SF =0

0=B,-B $Fy =0
B =7*d/2 B =17*d/2

7=0.18in |bs

image11.png
speed (rpm)

0

6
12
18
24
30
36
42
48
54
60
66
72
78
84
90
96
102
108
114
120

Torque (oz-in)

102
96.9
91.8
86.7
816
76.5
714
66.3
61.2
56.1

51
45.9
40.8
35.7
30.6
255
204
153
10.2

5.1
0

Current (mA)

Power (Watts)
3000
2863
2726
2589
2452
2315
2178
2041
1904
1767
1630
1493
1356
1219
1082

945
808
671
534
397
260

0
0.430236
0.815184
1.154844
1.449216

1.6983
1.902096
2.060604
2173824
2.241756

2.2644
2.241756
2173824
2.060604
1.902096

1.6983
1.449216
1.154844
0.815184
0.430236

[

Efficiency

0%

2%

4%

6%

8%
10%
12%
14%
16%
18%
19%
21%
22%
23%
24%
25%
25%
24%
21%
15%

0%

Stall Torque (ozin)

102
Stall Current (mA)
3000
Rated Voltage (V)
7.2
Free Run Current (mA)
260
Free Run Speed (rpm)
120
Resistance (ohms)
24

image12.png
Low value of speed is used.

We intend to run at 12 rpm.

Steady State Current - 2726 mA.

Power Supplied - 0.815W.

Torque - 5.73 Ibs in

T,y =3.09in Ibs

e= Ndl'S/NdI'II = (Tin/Tout) *1 where n =0.9

The gear ratio comes out to be 60:36 as driver:driven

image13.png

image14.png
Value of Moment M, =>SM, = —1.86in-1bf
Required Torque to move => 1.86 in Ib.

Motor has to provide torque greater than this to work through
its operation.

Using gear ratio 60:36 as driver:driven.

e= Jvdr:/Ndrn = (Tin/Tour) *1 where n=0.9

T, =3.44inIbs.

image15.png
Known Values

a:=3in b =2313n cc = 3.75in d = 2485in ee = 342in x:=35.17%n y=391lin

7y = 1ibf Wj = Stbf Wy=bf Theta) = 2265deg Theta, = 80.17deg

Equations for the system

0= My + Cyrd - Wycos(Thetay + Thetas):x - Wy-sin Theta, + Thetas)-y - Wy cos(Theta) + Thms};cos('rhmz)

. Mp =0
~ Wy sin Theta, + Thm;);sm('ﬂmz) - Wsin(Theta, + M;)-%-s-.('rm,) - W-cos(Thetay + 'l'luu;)-(d + %-cos('ﬂwh_.)) D
0= C, + D + Wy-sin(Theta, + Theta) + W-sin(Theta, + Thetas) + W-sin(Theta; + Thetas SF =0

0= Cy + Dy~ Wycos(Theta) + Thetas) ~ Wy-cos(Theta, + Thetas) ~ W-cos(Theta + Theta) SF, =0

image16.png
Equations for the Follower
0= By ce-cos(Thetay) ~ By-ccsin{Thetay) ~ W-sin{ Theta) + rhms’:v%su'rhm": - W-cos(Thetay + mm;)‘?cos{ Theta)) Mg =0
0= W sin(Theta) + Theta;) + B, - C, YF =0

0=By - Cy ~ W-cos(Thetay + Thetas) YFy=0

cc=3.75in

Free Body Diagram Of the Follower

image17.png
Equations for the Coupler

. ee
0=Byb-W;—

0=-A,-B,
0=—Ay—By—W'3

By
ee=3.42in
—
Bx<—‘7
EMy =0
X, =0
YXF,=0
y
W,
A
A~
b=231in
\
A

Free Body Diagram Of Coupler

image18.png
smd (rpm) Torqlm (u m) Torqm (m IbsCurrent (A) Pmr (wl)

7
15
22
30
37
45
52
60
67
75
82
90
97
105
12

0.45
042
0.39
0.36
0.32
0.29
0.26
0.23
0.19
0.16
0.13
0.10
0.06
0.03
0.00

4.02
374
345
3.16
287
259
230
201
172
144
1.15
0.86
0.57
0.29
0.00

1.900
1.784
1.668
1.562
1.436
1.320
1.204
1.088
0.972
0.856
0.740
0.624
0.508
0.392
0.276
0.160

0.4
07
09
11
13
14
14
14
14
13
11
0.9
07
04
0.0

Efficiency
0%
3%
5%
8%

10%
12%
15%
17%
19%
21%
22%
23%
23%
22%
17%
0%

Heat (wt)
15
14
12

"
10

SNNRAOODN®O

image19.png

image20.png

image21.png

image1.emf

image2.png

image3.png

1

W

ORCESTER

P

OLYTECHNIC

I

NSTITUTE

R

OBOTICS

E

NGINEERING

P

ROGRAM

F

i

n

a

l

T

e

r

m

P

r

o

j

e

c

t

S

UBMITTED

B

Y

Revant Mahajan

w

i

t

h

3

3

.

3

3

%

c

o

n

t

r

i

b

u

t

i

o

n

Arjun Gandhi

w

i

t

h

3

3

.

3

3

%

c

o

n

t

r

i

b

u

t

i

o

n

Andrew

Euredjian

w

i

t

h

3

3

.

3

3

%

c

o

n

t

r

i

b

u

t

i

o

n

Date Submitted

:

0

3

/0

3

/2018

Date Completed

:

0

3

/0

2

/2018

Course

Professors

:

Bertozzi

and

Miller

Lab Section

:

C02

1 W ORCESTER P OLYTECHNIC I NSTITUTE R OBOTICS E NGINEERING P ROGRAM F i n a l T e r m P r o j e c t S UBMITTED B Y Revant Mahajan w i t h 3 3 . 3 3 % c o n t r i b u t i o n Arjun Gandhi w i t h 3 3 . 3 3 % c o n t r i b u t i o n Andrew Euredjian w i t h 3 3 . 3 3 % c o n t r i b u t i o n Date Submitted : 0 3 /0 3 /2018 Date Completed : 0 3 /0 2 /2018 Course Professors : Bertozzi and Miller Lab Section : C02

