
 RBE 1001 A ’17, Introduction to Robotics
Final Project

“Lifty McLifterFace”

Team 2

Member Signature Contribution

Arjun Gandhi _________________ ____45%___________

Amrit Parmanand _________________ ____40%___________

Matt Ferreira _________________ ____15%___________

Grading: Presentation ___/20

 Design Analysis ___/30

 Programming ___/30

 Accomplishment ___/20

 Total ___/100

1

TABLE OF CONTENTS

Introduction ... 2

Preliminary Discussion ... 3

Problem Statement .. 4

Premliminary Designs ... 5

Selction of Final Design .. 6

Design Analysis .. 7

Mechanical Anaylsis ... 7

Wheel Base ... 7

Center Of Mass ... 7

Ramp ... 8

Four-Bar .. 10

Electrical Anaylsis .. 11

Programming Anaylsis .. 11

Sensor Integration: .. 11

Programming Methodology: ... 12

Section 7: Summary and ANaylsis ... 12

Appendix ... 13

Full Robot CODE ... 13

TABLE OF FIGURES

Figure 1: Picture of the Field .. 2

Figure 2: Strategy Sheet .. 3

Figure 3: Scoring Sheet ... 3

Figure 4: Robot Sketch ... 5

Figure 5: Drive Train Calculations ... 7

Figure 6: Center of Mass ... 8

Figure 7: Ramp Calculations .. 9

Figure 8: Four Bar Design .. 10

Figure 9: Power and Gearing Calculations ... 10

Figure 10: Electrical Diagram ... 11

file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579118
file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579119
file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579120
file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579121
file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579122
file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579124
file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579125
file://///storage.wpi.edu/home/my_documents/RBE%201001/Final%20Project/Team%202,%20Final%20Project%20Part%202.docx%23_Toc495579126

2

INTRODUCTION

The final lab tasked our team with constructing a

robot that is both autonomous and controlled via

remote and is capable of competing in each

complex scenario. Requirements with regards to the

robot include: sensor-based autonomy, a non-trivial

transmission, a custom circuit, and a lifting device

that can affect the outcome challenge. The field is setup up so that two teams will be operating at

the same time throughout the two minute twenty second match. Each robot starts in the pre-

designated start zone and is given one of two COOPs (Coalitions Ordinary Object Plane). Each

COOP contains a PEN (Portable EGG Nest) which is an elevated container that can be moved by

the robot. In the center of the field towards the back is the BARN (Big Assembly Retaining

NESTs) which holds each team's NEST (Nested Elevated Scoring Triangle). These two

containers are elevated fifteen inches off the ground. On either side of the field there is a RAMP

(Ramp Assisting Movement to PERCH) and a PERCH (Pretty Elevated Robot Communal

Hanger). Fifty EGGs (EGGcellent Game Gizmo) will be placed throughout the fields and will be

used for scoring. The value of each egg is dependent upon where and when it is placed by our

team's robot. Other contributors to the score are whether are not the robot can be supported by

both the RAMP and the PERCH. In the first twenty seconds of the match the robot must function

autonomously. Then in the next minute one teammate will take control, then in the following

minute another teammate will operate. Within the first two matches, it is required that all group

members take control of the robot. The remainder of this report discusses the manners in which

Insert field pic

and format right

Figure 1: Picture of the Field

3

our group tackled this complex challenge including: sketches, calculations, priority

characteristics, and how we decided upon our final design.

PRELIMINARY DISCUSSION

After going through the rules and procedures for the game. We broke down the game into

3 main scoring procedures, Autonomous, TeleOp, and End Game. We immediately realized that a

combination of these zones would be necessary for success in the game. We then proceeded to

construct scoring sheet outlining the point values shown in Figure 3 to the left. After creating a

scoring sheet, we constructed a

chart of possible combinations of

strategies, and assigned a difficulty

to each strategy shown in Figure 2

below. Then by dividing total

points by difficulty, we assigned a cost benefit ratio to each strategy, as shown in Figure 2. It is

obvious that Strategy 5 would

be the ideal strategy. The

strategy consists of moving the

pen, collecting eggs, and

dumping them into the high

goal during autonomous, while

focusing on the collection of eggs during TeleOp and hanging from the perch in the end game.

Figure 3: Scoring Sheet

Figure 2: Strategy Sheet

4

PROBLEM STATEMENT

After receiving and analyzing the challenge, the team created a list of prioritized objectives for the

robot. It is as follows:

1. Consistent system for dumping eggs into the NEST

2. Being able to hang at the end of the match

3. Hanging system integrated into the dumper

4. Consistent intake to create large loads of eggs to dump.

5. Be able to follow the lines in autonomous to dump eggs into and push the PEN out of its

initial position.

6. Use bump switches in order to sense when pressed against either the PEN or BARN

7. Have enough power to consistently lift large loads of eggs high enough to dump into the

BARN, and lift our entire robot off of the ground.

8. Have high maneuverability in the drivetrain

Our initial design makes this possible in a streamlined and simple way. The use of multiple line-

following sensors will make our autonomous objectives very easy to implement. However,

possible design flaws will likely affect being able to fill up our bin with a large amount of eggs

due to the way that they are being loaded into the bottom. The use of the four bar linkage for

moving the bin with eggs up into the NEST, while simplifying our design, may limit how high the

bin can be lifted.

5

PREMLIMINARY DESIGNS

After our Preliminary Design review, it was evident that our design needed to be simplified.

Therefore, we compromised with the design seen in Figure 4. The design consists of center

wheel drive with encoder feedback, a line tracker array for PID line following, bump sensors for

wall location and accuracy, a 4-bar egg storage lift with PID pot control for accurate positioning,

a custom red blue changer circuit, and an expanding lifting device from the bottom of the 4-bar

lift.

Figure 4: Robot Sketch Figure 4: Robot Sketch

6

SELCTION OF FINAL DESIGN

The design of our robot has changed dramatically from its inception to its final model. The wheel

design alone went through three very different iterations, starting at first with a four cornered

omni-directional drive train, to a six wheel design, to a more conventional four wheeled back

driven layout. The omni wheels will still be used in order to reduce sliding friction when the

robot is turning. The motors and major electronics will be placed above the rear wheels to allow

for more traction between the ground and the driving wheels. The parts for constructing the robot

will be laser cut from quarter inch board. The EGG Basket is operated by a four-bar linkage and

contains retractable hooks that will allow the robot to lift itself on the PERCH. The EGG

dumping functionality is powered directly by a motor connected to the four bar linkage, A simple

mechanical hard stop will prevent back driving of the 4 bar motors while the robot is hanging.

Our simple circuit consists of a three-way switch that lets the robot’s autonomous functions

know whether it is starting on the red or blue side, and lights up the appropriately colored LED.

7

DESIGN ANALYSIS

MECHANICAL ANAYLSIS

WHEEL BASE

After observing the performance of the base bot, we decided that the performance of the base bot

was satisfactory for our needs. The base bot drive train was satisfactory for our needs.

Calculations for the linear speed of our robot is shown below in Figure 5. Due to an unknown

weight. We assume the robot weight at a max of 10lb. From previous labs coefficient of friction

assumed to be 1.0. As shown speed of the robot is estimated to be 7 in/s.

CENTER OF MASS

As shown in the Figure 6 estimated center of mass for the robot in both positions of the four-bar

are relatively inline in both x and y and thus tipping is not a worry even with an extended arm.

Figure 5: Drive Train Calculations Figure 5: Drive Train Calculations

8

Figure 6: Center of Mass

Figure 6: Center of Mass

RAMP

After looking at the location of our center of mass it is immediately clear that the robot would tip

if we would attempt to climb up the ramp forward. We know this as the weight vector would be

9

outside the wheel

base. Therefore,

we determined it

would be best to

drive up the

ramp backwards

thus making it

more difficult for

the robot to tip.

Calculations

proving the robot

will still have

enough force on

the rear wheel to generate traction is shown in Figure 7.

Figure 7: Ramp Calculations

10

FOUR-BAR

The four-bar mechanism was designed in solid works and

modeled onto the robot as shown in Figure 8. The four-bar

mechanism is designed to hold about 15 eggs. The eggs were

found to weigh 1.2 lb. using a scale. The target speed for the

arm was 5 rpm and the estimated weight of the empty arm is

around 2 lb. with a center of mass located about 2 inches into

the basket. As shown in Figure 9 approximately 1.57 W are

needed to perform the lift.

while a 269 vex motor would be

sufficient, the final weights of the arm

are still not known yet and thus we

opted for a larger 393 motor. This

would allow our motor to be able to

handle the potential higher loads from a

heavier arm. The next step would be to

calculate the appropriate gear ratio for

our robot. The robot would be at max

torque when the crank is perpendicular

to the robot. The calculations for gear

ratios are shown in Figure 10. Of the

available gear ratios, we decided that 2

Figure 10: Gear Ratio Calculations

Figure 8: Four Bar Design

Figure 9: Power and Gearing Calculations

11

reductions would be necessary. From 12 to 60 twice this would give us a reduction of 1/25

which is sufficient.

ELECTRICAL ANAYLSIS

Our custom circuit was a 3-position switch with two options a red pathway and blue pathway which tells

the robot which autonomous to use and lights an appropriate LED. A diagram is shown in Figure 11.

Figure 10: Electrical Diagram

PROGRAMMING ANAYLSIS

SENSOR INTEGRATION:

On our robot, we have four different kinds of sensors for the stability and functionality of the robot

itself. We used a potentiometer, three VEX line trackers, and two VEX bump switches. These

sensors will be useful for both autonomous and teleoperated alike.

The potentiometer is used on the four-bar linkage to gauge position of the bin we intend to

implement. With this, we can use proportional control to reach the setpoints necessary for our bot

to function well.

The line trackers are going to be used almost exclusively for our autonomous program. We will

use the three sensors to figure out how far off the robot was from the line. The tracking will be

useful for the state-machine structure of the autonomous program.

12

The bump switches are placed on the back of the robot, where the eggs will be dumped out from

the robot. These switches are to verify that the bot is fully pressed against the BARN, which we

intend to dump the eggs into. They can also be used during autonomous to detect whether the bot

has reached the PEN and if it is pressing against it evenly. This will be key in our strategy, as the

bin must empty very close to the BARN itself.

PROGRAMMING METHODOLOGY:

The programming for this robot is quite easy to understand, and generally explains itself

through the function names. During autonomous, the bot uses a simple state machine to follow the

line to the PEN and once the bump switches on the front of the bot are triggered, the bot pushes

the pen forward and then dumps. The code for the line tracking is similar to the code written for

the lab, with the operation being ended by the bump switches rather than a horizontal line.

 The teleoperated is simple. There are three functions for the main objective: raise, lower,

and intake. Both raise and lower use a potentiometer on the four-bar linkage to find the correct

position. These will be controlled through proportional control for speed and precision. The intake

function would just run the motor controlling the intake roller. Additionally, there is a function to

deploy a small hook from the hopper, to climb.

SECTION 7: SUMMARY AND ANAYLSIS

 During the CDR the robot performed well for what we were trying to accomplish. We

were successfully able to intake eggs quickly and could dump loads of up to 16 eggs. There were

two main issues with our robot during the CDR. The first would be that due to the base of the

robot being lower to the ground than expected we were unable to climb the ramp. The second

13

issue was our code had no autonomous functionality. During the CDR we demonstrated our

robot’s ability to quickly obtain and dumb eggs by scoring 41 points into the NEST.

 After the CDR we decided that working on autonomous was the best path option and

worked on developing PID control for our 4-bar mechanism and attempted to develop a line

tracking path. Unfortunately, while we did get the autonomous egg dumping to work we were

unable to successfully test and create a line tracking program.

 During the competition we had several unexpected errors occur. We had two cases of

axles falling out due to a lack of proper securing methods and we had a battery die after the first

match. Despite all this we came 4th out of 10 in the competition and scored a total of 217 points.

 All in all, the team feels this class left us with a great wealth of knowledge in the field of

robotics. Even though the class was a large time commitment and difficult in many aspects. The

class was truly enjoyable and excites us for future robotics classes. We also feel that this class is

truly a class where you get out what you put into it. The more work you put into it, the more you

learn.

APPENDIX

FULL ROBOT CODE

RBEFinaL.ino

/* This is the RBE 1001 Template as of

*

* 3/28/17

*

* This Template

* is designed to run the autonomous and teleop sections of the final

* competition. Write and test your autonomous and teleop code on your

* own and place the code in auto.cpp or teleop.cpp respectively.

* The functions will be called by the competition framework based on the

14

* time and start button. DO NOT change this file, your code will be called

* by the framework. The framework will pass your code a reference to the DFW

* object as well as the amount of MS remaining.

*/

#include <DFW.h>

#include "MyRobot.h"

MyRobot lifty;

DFW dfw(&lifty); // Instantiates the DFW object and setting the debug pin. The debug pin will be set

high if no communication is seen after 2 seconds

void setup() {

Serial.begin(9600); // Serial output begin. Only needed for debug

dfw.begin(); // Serial1 output begin for DFW library. Buad and port #."Serial1 only"

lifty.initialize();

lifty.dfw=&dfw;

}

void loop() {

dfw.run();

}

MyRobot.cpp

#include "MyRobot.h"

#include "Arduino.h"

/**

These are the execution runtions

*/

MyRobot::MyRobot() {}

void MyRobot::initialize() {

leftMotor.attach(4, 1000, 2000);

rightMotor.attach(5, 1000, 2000);

liftMotor.attach(6, 1000, 2000);

feedMotor.attach(7, 1000, 2000);

pinMode(circuitPin, INPUT);

}

enum autoStates {

STARTING,

FIRSTLINE,

SECONDLINE,

THIRDLINE,

PUSH,

DUMP,

RIGHTTURN,

LEFTTURN

} autostate;

15

void MyRobot::feed() {

feedMotor.write(180);

}

void MyRobot::backFeed() {

feedMotor.write(0);

}

void MyRobot::feedOff() {

feedMotor.write(90);

}

void MyRobot::driveStraight() {

leftMotor.write(45);

rightMotor.write(135);

}

void MyRobot::followRight() {

leftMotor.write(35);

rightMotor.write(135);

}

void MyRobot::followLeft() {

leftMotor.write(45);

rightMotor.write(145);

}

void MyRobot::brake() {

leftMotor.write(90);

rightMotor.write(90);

}

void MyRobot::lineFollow() {

int leftTrack = analogRead(leftTrackPin), midTrack = analogRead(midTrackPin), rightTrack =

analogRead(rightTrackPin);

if (leftTrack > lightThreshold && midTrack < lightThreshold && rightTrack > lightThreshold)

driveStraight();

else if (leftTrack < lightThreshold && midTrack < lightThreshold && rightTrack > lightThreshold)

autostate = LEFTTURN;

else if (leftTrack > lightThreshold && midTrack < lightThreshold && rightTrack < lightThreshold)

autostate = RIGHTTURN;

else if (leftTrack > lightThreshold && midTrack > lightThreshold && rightTrack < lightThreshold)

followRight();

else if (leftTrack < lightThreshold && midTrack > lightThreshold && rightTrack > lightThreshold)

followLeft();

}

void MyRobot::moveTo(int position) {

int potVal = analogRead(potPin);

int error = potVal - position;

if (90 + KpUp * error > 180) {

16

liftMotor.write(0);

Serial.println("full up");

}

else if (90 + KpDown * error < 0) {

liftMotor.write(180);

// Serial.println("full down");

}

else if (error < 10) {

liftMotor.write(90);

// Serial.println("off");

}

else if (error < 0){

liftMotor.write(90 + KpUp * error);

// Serial.print("pid");

// Serial.println(90 + Kp * error);

}

else if (error > 0){

liftMotor.write(90+ KpDown * error);

}

}

/**

Called when the start button is pressed and the robot control begins

*/

void MyRobot::robotStartup() {

}

/**

Called by the controller between communication with the wireless controller

during autonomous mode

@param time the amount of time remaining

@param dfw instance of the DFW controller

*/

void MyRobot::autonomous(long time) {

// Serial.print("\r\nAuto time remaining: ");

// Serial.println(time);

int leftTrack = analogRead(leftTrackPin), midTrack = analogRead(midTrackPin), rightTrack =

analogRead(rightTrackPin);

int colorInput = digitalRead(circuitPin);

// Serial.println(time);

if(time > 11000){

moveTo(upPos);

}

else{

liftMotor.write(90);

17

}

// driveStraight();

// delay(startingDelay);

// brake();

// switch (colorInput){

// case 1:

// autostate = STARTING;

// switch (autostate) {

//

// case FIRSTLINE:

// lineFollow();

// break;

//

// case SECONDLINE:

// lineFollow();

// break;

//

// case THIRDLINE:

// lineFollow();

// break;

//

// case LEFTTURN:

// leftMotor.write(180);

// rightMotor.write(180);

// if(leftTrack > lightThreshold && midTrack < lightThreshold && rightTrack > lightThreshold){

// autostate = SECONDLINE;

// }

// break;

// case RIGHTTURN:

// leftMotor.write(0);

// rightMotor.write(0);

// if(leftTrack > lightThreshold && midTrack < lightThreshold && rightTrack > lightThreshold){

// autostate = THIRDLINE;

// }

// break;

//

// case PUSH:

// driveStraight();

// delay(250);

// autostate = DUMP;

// break;

//

// case DUMP:

18

// moveTo(upPos);

// break;

// }

// break;

//

// case 0:

// autostate = STARTING;

// switch (autostate) {

// case STARTING:

// driveStraight();

// delay(startingDelay);

// autostate = FIRSTLINE;

// break;

//

// case FIRSTLINE:

// lineFollow();

// break;

//

// case SECONDLINE:

// lineFollow();

// break;

//

// case THIRDLINE:

// lineFollow();

// break;

//

// case LEFTTURN:

// leftMotor.write(0);

// rightMotor.write(180);

// if(leftTrack > lightThreshold && midTrack < lightThreshold && rightTrack > lightThreshold){

// autostate = THIRDLINE;

// }

// break;

// case RIGHTTURN:

// leftMotor.write(180);

// rightMotor.write(0);

// if(leftTrack > lightThreshold && midTrack < lightThreshold && rightTrack > lightThreshold){

// autostate = SECONDLINE;

// }

// break;

//

// case PUSH:

// driveStraight();

19

// delay(250);

// autostate = DUMP;

// break;

//

// case DUMP:

// moveTo(upPos);

// break;

// }

// break;

// }

}

/**

Called by the controller between communication with the wireless controller

during teleop mode

@param time the amount of time remaining

@param dfw instance of the DFW controller

*/

enum teleStates {

DRIVING,

FEEDING,

BACKFEEDING,

RAISING,

LOWERING

} telestate;

void MyRobot::teleop(long time) {

// Serial.print("\r\nTeleop time remaining: ");

// Serial.print(time);

// Serial.println(analogRead(potPin));

telestate = DRIVING;

if (dfw->l1() == 1) {

telestate = FEEDING;

} if (dfw->one() == 1) {

telestate = RAISING;

} if (dfw->three() == 1) {

telestate = LOWERING;

} if (dfw-> r1 () == 1) {

telestate = BACKFEEDING;

}

switch (telestate) {

case DRIVING:

liftMotor.write(90);

feedOff();

rightMotor.write(180 - dfw->joystickrv()); //DFW.joystick will return 0-180 as an int into

20

rightmotor.write

leftMotor.write(dfw->joysticklv());

break;

case FEEDING:

feed();

rightMotor.write(180 - dfw->joystickrv()); //DFW.joystick will return 0-180 as an int into

rightmotor.write

leftMotor.write(dfw->joysticklv());

break;

case BACKFEEDING:

backFeed();

rightMotor.write(180 - dfw->joystickrv()); //DFW.joystick will return 0-180 as an int into

rightmotor.write

leftMotor.write(dfw->joysticklv());

break;

case RAISING:

feed();

liftMotor.write(0);

break;

case LOWERING:

liftMotor.write(170);

break;

default:

rightMotor.write(180 - dfw->joystickrv()); //DFW.joystick will return 0-180 as an int into

rightmotor.write

leftMotor.write(dfw->joysticklv());

break;

}

}

/**

Called at the end of control to reset the objects for the next start

*/

void MyRobot::robotShutdown(void) {

Serial.println("Here is where I shut down my robot code");

liftMotor.write(90);

feedMotor.write(90);

leftMotor.write(90);

rightMotor.write(90);

}

21

MyRobot.h

#pragma once

#include "Servo.h"

#include <DFW.h>

#include <AbstractDFWRobot.h>

class MyRobot :public AbstractDFWRobot{

public:

MyRobot();

DFW * dfw;

/**

* Called when the start button is pressed and the robot control begins

*/

void robotStartup();

void driveStraight();

void brake();

void lineFollow();

void followRight();

void followLeft();

/**

* Called by the controller between communication with the wireless controller

* during autonomous mode

* @param time the amount of time remaining

* @param dfw instance of the DFW controller

*/

void autonomous(long time);

/**

* Called by the controller between communication with the wireless controller

* during teleop mode

* @param time the amount of time remaining

* @param dfw instance of the DFW controller

*/

void teleop(long time);

void feed();

void backFeed();

void feedOff();

/**

* Called at the end of control to reset the objects for the next start

*/

void robotShutdown(void);

/**

* Return the number of the LED used for controller signaling

*/

int getDebugLEDPin(void){return 13;};

22

void initialize();

void moveTo(int position);

~MyRobot(){};

private:

Servo feedMotor, leftMotor, rightMotor, liftMotor;

const int leftTrackPin = 0, midTrackPin = 1, rightTrackPin = 2, potPin = 3, circuitPin = 22;

int inval, error;

const int lightThreshold = 400;

const float KpUp = 1.1, KpDown = 0.4;

const int upPos = 40, downPos = 640;

const int startingDelay = 50;

};

